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Received 2 April 1990 

Abstract. A gauge invariant interaction between a symmetric second-rank tensor field and 
a scalar field is examined in detail in exactly two dimensions. The quantum dynamics of 
the tensor field are determined solely by the gauge fixing term in the effective action. The 
divergence structure of this model is analysed. All divergences can be removed by renor- 
malizations of the scalar field wavefunction (both linear and nonlinear), and the 
non-polynomial interaction functions of the scalar field. We illustrate how operator 
regularization can be used to compute radiative effects to one-loop order. 

1. Introduction 

Two-dimensional field theories have attracted much attention over the past decade. In 
particular, a lot of study has been done of the two-dimensional nonlinear sigma models. 
The main reason for this interest is the connection between these models and the 
higher-dimensional string theories. It was Friedan [ 13 who first showed that these 
models are renormalizable, but not in the multiplicative (or, more correctly, linear) 
sense. The sigma models are also endowed with a geometrical structure. 

If the intention is to try out new calculational methods in a two-dimensional theory, 
the geometrical structure can complicate matters. For this reason we wish to examine 
a two-dimensional field theory which is (nonlinearly) renormalizable but which is 
structurally simpler than the nonlinear sigma model. It is our hope that this model 
can be used to learn about the quantum dynamics of other (nonlinearly) renormalizable 
theories in two dimensions such as, for instance, the (nonlinear) sigma model on a 
curved two-dimensional background space. 

Recently a renormalizable (in two dimensions) gauge theory involving a massless 
symmetric second-rank tensor fieldf h,, and a massive scalar field C#J was proposed 
for this purpose [ 2 ] .  In this paper we refine the model and discuss more fully the 
manner in which it is to be renormalized. The model has two unusual features: 

( i )  as the Lagrangian of the classical symmetric tensor field vanishes identically in 
two dimensions, the effective Lagrangian in this sector is given by the gauge fixing term; 

+ Permanent address: Department of Applied Mathematics, University of Western Ontario, London, Ontario, 
Canada N6A 5B9. 
$ W e  use the terms 'spin-2' and 'symmetric second-rank tensor' interchangeably, in accordance with [ 2 ] .  
The origin of our useage is in four-dimensional theories; in two dimensions the concept of spin is not 
properly defined. 
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(ii) as all the fields occurring in the model are dimensionless, nonlinear renormal- 
izations are allowed and, indeed, necessary, as we shall see in section 3.  

Clearly, the choice of gauge fixing term in the Lagrangian is of some importance. 
We must select a gauge fixing term which yields an effective Lagrangian which can 
then be used in the proposed calculational framework. It is important to use this 
criterion in choosing the gauge fixing term-indeed, if two-loop calculations are 
attempted using the gauge fixing term of [2] then intractable divergences of the form 

lim lo' dx x-c-2( 1 - x)' 
c-0 

are encountered. A choice of gauge fixing term more appropriate to the calculational 
method used overcomes this apparent difficulty. 

The next step is to analyse the divergence structure of the unregularized theory, 
and to provide a heuristic indication of how the divergences can be removed by 
renormalization. In four dimensions it is straightforward to provide a renormalization 
scheme symmetry indicating just how all of these infinities are to be removed. The 
non-zero dimensions of the fields in four dimensions have the effect of severely 
restricting both the possible terms which can occur in the Lagrangian and the possible 
types of renormalizations. In two dimensions the fields are dimensionless and the 
restrictions are fewer. 

The logarithmic infinities appearing in the Green function with just external scalars, 
(42"), are dealt with by means of both linear and nonlinear renormalizations of the 
scalar field 4. This is possible only because 4 is dimensionless. Gauge invariance 
ensures that h,, does not need to be renormalized. Quadratic divergences are removed 
from Green functions of the form ( 42") by renormalizing a function m2 V (  4) occurring 
in the initial Lagrangian. A similar device is used in the nonlinear sigma model [ 1,3]. 
Finally, the remaining logarithmic divergences appearing in the Green functions 
( h , , ~ * " )  indicate that we must renormalize a function F ( 4 )  occurring in the interaction 
term. 

The calculation of explicit Green functions in this model requires the specification 
of both a regularization procedure and a subtraction procedure. It is conventional 
nowadays to use dimensional regularization ( DR) together with some consistent subtrac- 
tion scheme, such as MS. Such an approach is not suited to this model as it inevitably 
involves continuing away from two dimensions. But it is only in exactly two dimensions 
that the (symmetric) tensor field Lagrangian vanishes, and that all the fields are 
dimensionless. Thus, even though DR respects the gauge invariance of the model, we 
opt instead for an alternative symmetry-preserving regularization scheme, namely 
operator regularization (OR)  [4] as it leaves unchanged the dimensions of the space 
on which the model is defined. It has the additional advantage of eliminating the need 
to specify a separate subtraction scheme. No explicit divergences occur at any stage 
of the calculations-the renormalizations are carried out implicitly. 

This paper is organized as follows. Section 2 contains the details of the model-we 
introduce the effective Lagrangian. In section 3 we examine the divergence structure 
of the bare theory and indicate how renormalizations of mass, wavefunctions (both 
linear and nonlinear renormalizations) and the non-polynomial (interaction) functions 
of the scalar field can serve to eliminate all the divergences. In section 4, operator 
regularization is applied to the model and some sample calculations are carried out 
to illustrate the unusual renormalization features highlighted in section 3. Some 
concluding remarks are included in section 5 ,  while an appendix contains the necessary 
details to carry out the calculations reported in the text. 
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2. The model 

We begin with the scalar field Lagrangian 

2 A  = - 2 4P24 + m2 V ( 4  1) ( p = -id) ( l a )  

where V( 4)  is a non-polynomial function of the scalar field 4 satisfying V( 4)  = V( -4), 
V(0) = 0 and V ( 0 )  = 2.  This field 4 is to be coupled to a spin two field h,, whose 
Lagrangian [2] is 

2~ = i (d ,h~h -2d,h, , ) ’ -  ( d ~ f i , ” ) ~  + ; ( d , h ~ ~ ) ~ .  (1b) 

In two dimensions, TB vanishes identically. This Lagrangian is invariant under the 
gauge transformation 

A,”-+ h , , + a , L + ~ , A ,  4 + 4 .  (2)  

2, =4hWY(d,’a” - 8,d2)F(4) (3) 

This gauge invariance is preserved if we couple h,, to 4 with the coupling 

where F ( 4 )  is a (possibly non-polynomial) function of the scalar field 4 satisfying 
F ( 4 )  = F ( - $ )  and F ( 0 )  = O .  

The full gauge invariant classical Lagrangian is 

2 c1 = - q  2 4 ~ ~ 4  +m2v(4))+t(d ,hA,  - 2 a A h , , ) 2 - ( d , h , . ) 2 + ~ ( d , h , , ) 2  

+4h,”(d,dY - S,d2)F(4). (4) 

This Lagrangian is more general than that considered previously in [2]. The earlier 
model corresponds to a particular choice of the functions V ( 4 )  and F ( 4 ) ,  namely 
V ( 4 )  = + 2  and F ( 4 )  = A4’. However, as 4 is dimensionless in two dimensions it is 
possible to include the more general form (without necessarily prejudicing the renor- 
malizability of the model, as we shall see in section 3). The occurrence of non- 
polynomial functions of the scalar field in the classical Lagrangian is a feature of not 
only the model proposed in this paper, but also of the nonlinear sigma models. In the 
sigma models [ l ,  31 it is the metric g , , ( + )  and the function V ( 4 )  which are non- 
polynomial in 4, while in this model it is the functions F(4)  and V ( 4 )  that are 
non-polynomial. It must be emphasized that it is only in two dimensions that the 
occurrence of such non-polynomial interactions does not give rise to additional 
dimensional coupling constants, as scalar fields are dimensionless only in two 
dimensions. 

In order to break the gauge invariance of 2 under the gauge transformations of 
(21, we choose a gauge fixing term of the form 

-Yg,= - (Ad,h, ,  + Bd.h,,)’. ( 5 )  

We are interested in identifying the term in the effective Lagrangian 2c.+2?g, which 
is bilinear in h,”. The most useful way to do this is to avail of the known set of 
projection operators [ 51 for the symmetric second-rank tensor field. These projection 
operators are defined, in n dimensions, by 
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in terms of the quantities 

P U P P  eaP = sa, -- 
P 2  

P U P P  
U a p  =- 

P 2  

The upper labels on the projectors P refer to the spin associated with the projection 
operator in the case n = 4 .  The first four projectors taken together { P ( ” ,  P: ) ,  PIP’, Pio’} 
from a complete set of orthogonal projection operators. The remaining two projection 
operators are not orthogonal to the elements of this set. They are in fact transition 
operators between the two spin-0 subspaces labelled by U and s. 

When we restrict our attention to two dimensions, the set of projection operators 
simplifies, as P c 2 )  = 0 identically. This allows us to rewrite Zgf using (5)-(7), as 

Lfg,= -~hUp[~A2P!,‘ ,’  + ( A  + B)*P?’ + B2P$O’+ ( A  + B)B(PSo,’ + P?:)lap,.,a h,,a. (8) 

For arbitrary A and B, Zgf depends on the transition operators Pi:) and PIP:. However, 
if A + B vanishes we see that these operators do not contribute and Lfgf can be written 
solely in terms of the orthogonal projection operators. For convenience we choose 
A = - B = 2 ,  to find 

Zgf= -+ha& P:) + 2Pi0’) hy8. ( 9 )  

This particular combination of orthogonal projection operators will turn out to be 
particularly useful. (We note in passing that in [2] the choice for Zgf corresponded to 
A = 0 ,  B=+.) 

3. Divergence structure of the bare model 

Before proceeding to demonstrate how particular Green functions are to be computed 
in this model, we wish to show that the model is, indeed, renormalizable. To do this 
it is first necessary to consider the divergence structure of the bare model. 

In the conventional Feynman approach vertices are quadratic in moments and 
propagators are quadratic in inverse momenta. This would suggest that all unregulated 
Green functions are naively quadratically divergent. However, as external spin-2 fields 
are transverse (due to the gauge invariance of (4)) the degree of divergence for any 
Green function is reduced by two for each an external field h F V .  The role of gauge 
invariance here is similar to the role of gauge invariance in QED. 
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Thus, power counting and gauge invariance gives rise to the following divergence 

(i)  All Green functions ( 42") have logarithmically and quadratically divergent parts. 
(ii) All Green functions (l19~") are logarithmically divergent. 
(iii) All Green functions (h"r$'"), m b 2, n a 0, are finite. 
This divergence structure cannot be treated by means of a standard linear renor- 

malization scheme. However, it is posible to renormalize the theory provided we 
introduce both nonlinear field renormalizations and renormalizations of the non- 
polynomial interaction functions. One renormalization scheme which will deal with 
the rich divergence structure of the model is as follows. 

(a) The logarithmic divergence in the Green function (42) is eliminated by means 
of a linear wavefunction renormalization 29. 

(b) The further logarithmic divergences in the Green function ( 4 2 n ) ,  for n > 1, can 
be eliminated by nonlinear wavefunction renormalization of the form Zn4 ". 

The relationship between the bare and renormalized resulting from the wavefunction 
renormalizations of (a) and (b) is 

structure. 

(c) There is no wavefunction renormalization for the field h,, as all Green functions 
of the form (h"4'")  for m 3 2, n b 0 are finite. 

(d)  The quadratic divergences in Green functions of the form (92n)  for n 2 1 are 
dealt with by renormalizing the function V ( 4 )  which occurs in the scalar field 
Lagrangian of (1). Such a renormalization can be simply viewed as a generalization 
of the usual mass renormalization. We can see this more clearly if we expand the term 
in the spin-0 Lagrangian of (1): 

1 
4! 

v " ( o ) ~ ~ + -  V ( I ~ ) ( O ) ~ ~ + .  . . 

= m:42+m:44+.  . . . (11) 

This indicates that renormalizing V( 4 )  means renormalizing all the expansion 
coefficients of V (  4)-or just simply renormalizing an infinite set of coupling constants. 
A device such as this has already been used in the nonlinear sigma model [l,  31. 

(e) Finally, the logarithmic divergences divergences occurring in Green functions 
(h4'") for n > 1 are eliminated by a renormalization similar to that at stage (d).  It is 
the function F ( 4 )  which occurs in the interaction Lagrangian of (3) that is to be 
renormalized. This can be viewed as a generalization of the usual coupling constant 
renormalization, especially if we expand F ( 4 )  in powers of 4:  

1 1 
2 !  4! 

~ ( 4 ) = -  F " ( O ) ~ * + -  ~ ( 1 ~ ) ( 0 ) 4 ~ + .  . . 

= ~ 2 4 ~ + ~ 4 4 ~ + .  . . . (12) 

Renormalizing each of the expansion coefficients is just renormalizing an infinite set 
of coupling constants. While in this model, and in the sigma models, it appears, at a 
perturbative level, as if we are renormalizing infinite sets of coupling constants, 
nevertheless these renormalizations can be interpreted more simply as renormalizations 
of the non-polynomial functions-in this case, V( 4 )  and F (  d)-directly. 
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In this section we have been discussing the unregulated theory. Some symmetry- 
preserving regulating procedure must be invoked to render meaningful the 
renormalization procedure outlined above. In the following section we employ operator 
regularization. When calculating regulated Green functions we make use of Schwinger 
expansions rather than the Feynman perturbation expansion. No divergences ever 
occur in the evaluation of these operator-regulated Green functions. Nevertheless, 
when the regulating procedure is turned off the divergence structure is identical in the 
Schwinger and Feynman approaches. 

4. Sample computations in the operator-regulated model 

In the preceding section we discussed the divergence structure of the bare theory and 
argued that the theory is renormalizable by means of both nonlinear wavefunction 
renormalizations and the renormalization of the non-polynomial interaction terms. In 
this section we examine the regulated theory. 

Once a theory is regulated it is possible to compute radiative effects. Operator 
regularization is particularly well suited to this model for several reasons. It preserves 
the gauge symmetries of the theory. The regulated theory resides in exactly two 
spacetime dimensions so that the important features of the classical two-dimensional 
field theory are retained, namely the vanishing of the free symmetric tensor Lagrangian 
of ( l b )  and the zero dimensions of all the fields of the theory. 

Operator regularization requires the use of background field quantization. This 
involves first expanding the fields of the theory, h and 4, into the sum of classical 
fields ( k  and f )  and quantum fields ( y and +) 

h,” = kP” + Ypy (13a) 

4=f++ .  (13b) 

Computation of one-loop effects using background fields requires only those terms in 
the effective Lagrangian 2ZC, + Lfgr bilinear in quantum fields, namely 

9 2 )  = 32) + y‘,” + 3y + 22) 

I[ y j o ]  (14) = ~ [ Y ~ ~ ~  +I[ t F ’ ( f ) ( p , p ,  -p26 , , )  p2 + m2 V ” ( f )  + + K F ” ( f )  
P2(p: )+  2p:o))P”, ,p t ( P &  - P 2 S , , ) F ’ ( f )  

where 

rl6 = k,,,,, - k,,,,, (15) 

is linear in the background field k while F ’ ( f ) ,  F ” ( f )  and V”(f) are in general 
non-polynomial functions of the background field f: The unregulated one-loop 
generating functional is evaluated to be 

P’)= - 4  In det(M/p2) (16) 

where the matrix M (with the dimensions of (mass)2) is given by 

(17) 
M = [  P’( p: ) + 2 PI0’) @“,a, tc P P P Y  - P2S,” ) F’( f 

$F’ ( f ) (p ,p@ - P 2 S , p )  p2+Im2 V(f) + f K F F ” ( f )  
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The one-loop generating functional I'(' is unique to an additive background-field- 
independent factor. We can make use of this ambiguity to rewrite r(l) in terms of a 
matrix whose diagonal entries are simpler, for future computations 

r(ll = - f  ln[(det-' X) det(XM/p')] - f  In det(XM/p') (18) 

where 

We now regulate the functional determinant in (18) using operator regularization [4] 
so that 

where 

l ( s )  =- dt  t S - '  Tr exp[-t(MX/p2)]. (20) U s )  0 

One-loop Green functions can be obtained from the regulated generating functional 
r(l) of (19) by use of the Schwinger expansion [4,6] 

eA+'=joXdal  e a l A 6 ( l - a l ) + j  0 d a ,  da2eP~ABea2AS(1-a l - a2 )  

+ loz d a ,  da ,  d a 3  eelAB eUIAB e"3A6(1 - a ,  - a2- a,) 

Jc 

+. . , (21) 
where A is the part of MX/p2 that is independent of the background fields 

A =  

0 p 2 +  m2J 
P' 

and B is the background-field-dependent part of MX/p', 

B =  
0 

To illustrate how particular finite Green functions are obtained using operator regulariz- 
ation we consider now a restriction of the model to the case V(f) = F ( f )  = f '. In this 
restricted model we compute the log dependence of the Green functions (ff), ( k k )  and 
(kff). The steps of the calculations are indicated in the appendix, and the results of 
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the calculations are given in (A.7), (A.14), (A.15). Although the restricted model will 
not yield all the Green function of the full model, it is possible by substitution of F(f) 
and V(f) in the appropriate paces to generalize the results so that the structure of the 
Green functions of the full model is apparent. A distinctive feature of operator 
regularization is that the subtraction of divergences is an implicit part of the regulariz- 
ation, so that all Green functions are automatically finite. The occurrence of the 
logarithm factor ln(m2/p2)  in the finite Green function is a reflection of the occurrence 
of divergences, and consequent subtraction and renormalization, in the usual 
approaches. For example, the log-dependent part of rg) is shown in the appendix to 
be 

The log dependence of the f2 (x )  term is an indicator of an implicit mass renormaliz- 
ation, while the log dependence of the f(x)f(x),,, term is an indicator of an implicit 
linear wavefunction renormalization. In contrast, there is no log dependence whatsoever 
in rpi, indicating the absence of either a mass or wavefunction renormalization for 
the spin-2 field. In section 3 we noted that all bare Green functions ( f 2 " ) ,  and not just 
(ff), are logarithmically divergent. For all n > 1 these divergences are removed by a 
nonlinear wavefunction renormalization. Such a nonlinear wavefunction renormaliz- 
ation manifests itself, in operator regularization, by the presence of a dependence on 
ln(m2/p2)  in the derivative terms such as (f(x))"(f(x)):" of the Green function (f2"),  

for n 2 2. 
To see the occurrence of this feature in the simplest case of (f4) we could either 

compute directly in the restricted model discussed above the Green function (f4) or 
we could note the simpler option of using the full model of (14) and replacing f ( x )  
in the second term of (24) above by f F ' ( f ) .  This would generate the log dependence 

This generating functional will lead to contributions to I':: proportional to terms of 
the form 

M m 2 / p 2 )  j dxf2(X)(f2(X)),na.  (26) 

The occurrence of such terms is an indicator of an implicit nonlinear wavefunction 
renormalization. The log dependence of the (f4) Green function occurs only in the 
terms with zero and two derivatives. The zero derivative log dependence is an indicator 
of the implicit renormalization of the function V(f ) .  

5. Concluding remarks 

In this paper we have examined a two-dimensional scalar-tensor gauge theory which 
possesses a number of features that are of some interest. First of all, at the classical 
level the free Lagrangian for the second-rank symmetric tensor field vanishes so that 
the dynamics in the quantum theory are determined by the gauge fixing term. Secondly, 
all the fields in the model are dimensionless. This feature allows the classical Lagrangian 
to have the non-polynomial interaction terms made necessary by the divergence 
structure of the quantum theory without prejudicing the renormalizability of the model. 
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In section 3 we discussed the divergence structure of the bare theory and indicated 
how all the divergences could be eliminated by means of not only the usual mass and 
linear wavefunction renormalizations but also a nonlinear wavefunction renormaliz- 
ation and the renormalization of the two non-polynomial functions of the scalar field 
which enter the classical Lagrangian. 

In section 4 we showed how to set up a framework for computing radiative effects 
in exactly two dimensions without destroying the gauge invariance of the theory. This 
involves operator regularization, a technique for writing down the regulated (and 
renormalized) generating functional for one particle irreducible Green functions 
without encountering any explicit divergences. 

In this paper we have restricted our attention to one-loop order. However, operator 
regularization can also be used to compute Green functions to two-loop order (and 
beyond). This has been done successfully in the nonlinear sigma model [7] and several 
scalar field theories [8]. 

In section 4 and the appendix we considered the finite (renormalized) Green 
functions (ff), ( k k ) ,  ( k f f )  and (f ') and showed how to identify the occurrence of the 
implicit mass, linear and nonlinear wavefunction and non-polynomial renormalizations 
by analysing the dependence of these Green functions on ln(m2/p2).  

The dependence of the regulated generating functional on the radiatively induced 
mass parameter p2  merits consideration. In multiplicatively renormalizable models 
changes in p 2  can be compensated for by charges in the renormalized quantities; this 
is the content of the renormalization group equations. The situation in the model 
proposed in section 2 is complicated by the nonlinear wavefunction renormalizations 
and the renormalization of the non-polynomial functions V ( 4 )  and F ( 4 ) .  It would 
be interesting to see if a renormalization group equation can be written down in closed 
form and to compute the associated renormalization group functions. We hope to 
return to this question at a later time. 
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Appendix 

In this appendix we show how to compute finite renormalized Green functions using 
operator regularization. The calculators are carried out in the restricted model of 
section 4, i.e. the case where F (  f )  = V (  f )  = f '. The matrix A of (22) is not affected 
by this restriction, but the matrix B of (23) is replaced by 

Green functions are obtained by using the Schwinger expansion of (21) in the generating 
functional of (19) and (20) and evaluating the functional trace. 
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In this appendix we compute the two-point functions (ff) and ( k k )  to illustrate the 
method. Keeping those terms that contribute to the two-point functions, we find that 

-iAp2ef11. 0 
x [ - A f S p 2  0 

As in two dimensions P;’+  Pjo’+ PF’=  1, we see that 

exp[-p2(P:’+ ~ t O ’ ) t ]  = e-P2‘(P:’+ ~ j o ) )  + P I P ’ ,  
We also note that 

w e = o  

e(P:)+P:O))e = 1 

and therefore 

L2(s)=&Tr [oedtr‘’ Jo’ d u { e x p [ - ( l - u ) ( p 2 + m 2 ) t ] f p 4 e x p ( - u p 2 t ) f  
2US) 

(A.3) 

+exp[-(l- u ) ( p 2 +  m ’ ) t ] ~  exp[-u(p2+ m ’ ) t ] ~ } .  (A.6) 

As the projection operator PIP’ occurring in (A.3) does not contribute to (A.6), the 
infrared problem occurring in [2] does not arise. We now compute the functional trace 
in (A.6) by inserting complete sets of states [4,6]. For (kw,,kAv), we work entirely in 
momentum space so that we obtain the transverse result 

For (ff) it is convenient to use the approach of [8] so that 

we find that 

xexp[i(p-q)(x-y)]q4exp{-[( l  -u ) (p2+m2)+uq2] t ) .  (A.lO) 
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If we now shift variables x + x + y and make the expansion 

we can integrate over x using the equation 

(A.12) 

Keeping the first three terms in (A. l l ) ,  and performing the standard integrals that 
arise, leaves us with the result 

(A.13) 

This yields the ff contribution to the generating functional 

rgJ = ti&( 0) 

1 
857 

=- 1 d x ( t m 2 ( f ( x ) ) ' { - t + L } + f ( x ) f . , , ( x ) { - ~ + L } )  (A.14) 

where L = In( m 2 / p 2 ) .  

can compute the contributions to ( k F Y f f )  that depend on L, and we find 
We note from (A.7) that rLd,=ilkw(0) is independent of L. In a similar way we 

Gj-f = t lk  d o )  

(A.15) 

This dependence on L indicates an implicit coupling constant renormalization. 
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